p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.32D8, C22.2Q32, C22.2SD32, C2.D8⋊2C4, C4.19C4≀C2, (C2×Q16)⋊1C4, (C2×C8).301D4, C22⋊C16.3C2, C4.6(C23⋊C4), (C2×C4).14SD16, C2.5(D8⋊2C4), C8.18D4.1C2, (C22×C4).186D4, C2.3(C2.Q32), (C22×C8).98C22, C22.4Q16.33C2, C22.56(D4⋊C4), C2.13(C22.SD16), (C2×C8).18(C2×C4), (C2×C4).218(C22⋊C4), SmallGroup(128,80)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.32D8
G = < a,b,c,d,e | a2=b2=c2=1, d8=c, e2=a, ab=ba, ac=ca, dad-1=abc, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=ad7 >
Character table of C23.32D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ1615-ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ1615+ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | -1+i | 1+i | 1-i | -1-i | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 1+i | -1+i | -1-i | 1-i | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 1-i | -1-i | -1+i | 1+i | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | -1-i | 1-i | 1+i | -1+i | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ23 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1615+ζ169 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ24 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ167+ζ16 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | complex lifted from SD32 |
ρ25 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | complex lifted from SD32 |
ρ26 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | complex lifted from SD32 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊2C4 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊2C4 |
(2 29)(4 31)(6 17)(8 19)(10 21)(12 23)(14 25)(16 27)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 17)(15 18)(16 19)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 13)(2 31 29 4)(3 22)(5 9)(6 27 17 16)(7 18)(8 14 19 25)(10 23 21 12)(11 30)(15 26)(20 32)(24 28)
G:=sub<Sym(32)| (2,29)(4,31)(6,17)(8,19)(10,21)(12,23)(14,25)(16,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,17)(15,18)(16,19), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,13)(2,31,29,4)(3,22)(5,9)(6,27,17,16)(7,18)(8,14,19,25)(10,23,21,12)(11,30)(15,26)(20,32)(24,28)>;
G:=Group( (2,29)(4,31)(6,17)(8,19)(10,21)(12,23)(14,25)(16,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,17)(15,18)(16,19), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,13)(2,31,29,4)(3,22)(5,9)(6,27,17,16)(7,18)(8,14,19,25)(10,23,21,12)(11,30)(15,26)(20,32)(24,28) );
G=PermutationGroup([[(2,29),(4,31),(6,17),(8,19),(10,21),(12,23),(14,25),(16,27)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,17),(15,18),(16,19)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,13),(2,31,29,4),(3,22),(5,9),(6,27,17,16),(7,18),(8,14,19,25),(10,23,21,12),(11,30),(15,26),(20,32),(24,28)]])
Matrix representation of C23.32D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
11 | 2 | 0 | 0 |
16 | 9 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 16 | 0 |
16 | 15 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 4 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[11,16,0,0,2,9,0,0,0,0,0,16,0,0,4,0],[16,0,0,0,15,1,0,0,0,0,16,0,0,0,0,4] >;
C23.32D8 in GAP, Magma, Sage, TeX
C_2^3._{32}D_8
% in TeX
G:=Group("C2^3.32D8");
// GroupNames label
G:=SmallGroup(128,80);
// by ID
G=gap.SmallGroup(128,80);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,520,1690,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=c,e^2=a,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*d^7>;
// generators/relations
Export
Subgroup lattice of C23.32D8 in TeX
Character table of C23.32D8 in TeX